CALCULATION POLICY

What is maths mastery?

Teaching maths for mastery is a transformational approach to maths teaching which stems from high performing Asian nations such as Singapore. When taught to master maths, children develop their mathematical fluency without resorting to rote learning and are able to solve non-routine maths problems without having to memorise procedures.

Concrete, pictorial, abstract (CPA)

Concrete, pictorial, abstract (CPA) is a highly effective approach to teaching that develops a deep and sustainable understanding of maths. Developed by American psychologist, Jerome Bruner, the CPA approach is essential to maths teaching in Singapore.
Pupils builds on their existing knowledge by introducing abstract concepts in a concrete and tangible way. It involves moving from concrete materials, to pictorial representations, to abstract symbols and problems.

Concrete is the "doing" stage. During this stage, students use concrete objects to model problems. This approach brings concepts to life by allowing children to experience and handle physical (concrete) objects. With the CPA framework, every abstract concept is first introduced using physical, interactive concrete materials.

Pictorial is the "seeing" stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures, diagrams or models that represent the objects from the problem and makes it far easier for them to grasp difficult abstract concepts.

Abstract is the "symbolic" stage, where children use abstract symbols to model problems. Pupils will not progress to this stage until they have demonstrated that they have a solid understanding of the concrete and pictorial stages of the problem. The abstract stage involves the teacher introducing abstract concepts (for example, mathematical symbols). Children are introduced to the concept at a symbolic level, using only numbers, notation, and mathematical symbols (for example, $+,-, \mathrm{x}, /$) to indicate addition, multiplication or division.

Bar modelling

The bar model method is a strategy used by children to visualise mathematical concepts and solve problems. The method is a way to represent a situation in a word problem, usually using rectangles.

Solving Problems with Bar Modeling

Number bonds

Number bonds are a way of showing how numbers can be combined or split up. They are used to reflect the 'part-part-whole' relationship of numbers. A lot of emphasis is put into number bonds from the early year foundation stages so that children can build up their number sense prior to learning addition and subtraction. In the early stages students would be introduced to number bonds with concrete experiences, for example children could be given 6 linking cubes and guided to understand that 2 and 4 make 6 , but that 1 and 5 also make 6 .

The mastery of number bonds is an important foundation required in subsequent mathematical learning and as a basis in the development of mental strategies. A strong number sense allows students to decide what action to take when trying to solve problems in their head.

YEAR 1

PLACE VALUE - COUNTING

Counting to 10:

We can count back....
We can count on....

Counting with objects:

Physical objects Tens squares
Counting with objects:

| 3 \|||11 |
| :---: |
| | |
| |
| |
| |

1	2	3	4	5	6				

Counting with number lines:

Using multilink cubes

YEAR 1

PLACE VALUE

Dienes to represent numbers: Number bond method:

Tens	Ones	
	The dienes show 6 tens and 4 ones.	
This shows the number 64.		

Separating the numbers apart like this is called partitioning.

Writing numbers to 10 :

3 three

Ordering numbers:

Comparing numbers:

There are 3 cupcakes.
There are 5 cookies.
There are 7 doughnuts.

Which number is more than the others? Which number is less than the others?

1	2	3	4	5	6	7	8	9	10

7 is more than 5.
7 is more than 3.
7 is the greatest.

3 is less than 7.
3 is less than 5.
3 is the smallest.

YEAR 1

ADDITION

Tens frame:

Number bond method:

Counters method:

Base 10 method:

Number line method:

| 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |

Tens strip:

Count on from the biggest number:

$$
6+4=10
$$

Number bond method:

$$
6+4=10
$$

Picture method:

Abstract calculations:

Commutative	Inverse
$2+5=7$	$7-5=2$
$5+2=7$	$7-2=5$

Bar model:

YEAR 1

SUBTRACTION

Tens frame:

Number bond method:

Picture method:

Number line method:

Tens strip:

Count back from the biggest number:

$$
7-2=5
$$

Number bond method:

Counters method:

Base 10 method:

Ones
(1)
ロ
-13
1

YEAR 1

MULTIPLICATION \& DIVISION

Making equal groups

Adding equal groups

There are 4 trays.

4 trays of $5=20$
4 groups of $5=20$
4 fives $=20$

Each tray has 5
$5,10,15,20$

There are 20 altogether.

Making doubles

There are 10 toy soldiers in one row. 2 tens $=20$
There are 20 toy soldiers altogether.

DIVISION

Grouping equally

There are 8 cans.

There are 4 boxes of 2 cans.

Sharing equally

There are 6 cookies and 3 children.
Each child takes one cookie.

Each child takes one more cookie.

Each child gets 2 cookies.

YEAR 2

PLACE VALUE

Counting in tens to 100:
We can count on....

We can represent two-digit numbers in these ways:

tens	ones
6	5

Comparing numbers:

7 tens is more than 6 tens.
75 is more than 63.
75 is more than 69.
75 is the greatest.
3 ones is less than 9 ones.
63 is less than 69.
63 is the smallest.

Using the < > signs
(20
We can arrange the numbers in order:
$\begin{gathered}75, \\ \text { greatest }\end{gathered} \xrightarrow{63,} \begin{aligned} & \text { smallest }\end{aligned}$
smallest

63, $\underset{\text { greatest }}{69}$

Counting in tens and ones:

We can make numbers using different number bonds:

We can extend number patterns:

We can make a number pattern.
Each number is less than
Lach number is less than
the number before it.

YEAR 2

ADDITION

Counters method:

Tens	Ones

Number bond method:

Number line method:

Column addition:

18	19	19
+ 11	+13	12
29		$\frac{20}{32}$

Base 10 method:

Tens	Ones
目	
目	

Number bond method:

Bar model:

Abstract calculations:

Commutative	Inverse
$19+13=32$	$32-13=19$
$13+19=32$	$32-19=13$

YEAR 2

SUBTRACTION

Counters method:

Bar model:

28	
25	3

Number bond method:

Column subtraction:
Without renaming:

With renaming:

Expanded method:

Base 10 method:

Number line method:

Number bond method:

Abstract calculations:

Commutative	Inverse
$25+3=28$	$28-3=25$
$3+25=28$	$28-25=3$

YEAR 2

MULTIPLICATION

Repeated addition:

Groups of:

Grouping Method:

Number line method:

Multiplication:

Abstract calculations:

$$
\begin{array}{|c|}
\hline \text { Commutative } \\
\hline 3 \times 4=12 \\
4 \times 3=12
\end{array}
$$

YEAR 2

Make a family of multiplication and division facts:

Look at the picture.
Make a family of multiplication and division facts.

$2 \times 10=20$ $20 \div 2=10$
$10 \times 2=20$
$20 \div 10=2$

Solving Problems:

Ruby has 15 marshmallows.
She packs 5 marshmallows into each bag. How many bags does Ruby need?

Method 2
Draw a picture.

Solving Problems

Ruby has 15 marshmallows.
She packs 5 marshmallows into each bag. How many bags does Ruby need?

Method 1

Use for each bag.

Solving Problems:

Ruby has 15 marshmallows.
She packs 5 marshmallows into each bag. How many bags does Ruby need?

Method 3 Use a division equation.
15
$\div 5$ 3

Ruby needs
3 bags.

YEAR 3

PLACE VALUE

Base ten or dienes blocks:

Value of digits:

hundreds	tens	ones
4	2	7

$427=4$ hundreds +2 tens +7 ones
$427=400+20+7$

The digit 4 stands for 4 hundreds or 400 .
The digit 2 stands for 2 tens or 20 .
The digit 7 stands for 7 ones or 7 .
We write 427 as four hundred and twenty-seven.
Number lines:

211	212	213	214	$?$	216
\mid					
1	212	213	214	$?$	216

Finding 1 more or less than:

Number bond method:

Place value cards:

Separating the numbers apart like this is called partitioning.

Finding 10 more or less than:

Finding 100 more or less:

$\downarrow 100$ more

YEAR 3

ADDITION

Counters method:

Hundreds	Tens	Ones

Number line method:

213	214	215	216	217

Number bond method:

Abstract calculations:

Commutative	Inverse
$213+4=217$	$217-4=213$
$4+213=217$	$217-213=4$

Base 10 method:

Bar model:

217	
213	4

How many pencils do they have altogether?
23

$15+23=38$
They have 38 pencils altogether.
Number bond method:

Column addition:
Without renaming:
With renaming:

YEAR 3

SUBTRACTION

Counters method：

Hundreds	Tens	Ones
	10	

Number line method：

Number bond method：

Abstract calculations：

Commutative	Inverse
$658-4=654$	$654+4=658$
$658-654=4$	$4+654=658$

Base 10 method：

Hundreds	Tens	Ones
	目自慁睍目見	（1）\square^{1}
		又又
		X

Bar models：

Bar model：

There are 36 children in the school band 19 of them are boys．
How many girls are there？

Comparative model：
A spider has 8 legs． An ant has 6 legs．

$8-6=2$
\qquad

Number bond method：

Column subtraction： Without renaming：

With renaming：

YEAR 3

MULTIPLICATION

Arrays:

3 times tables	4 times tables	8 times tables
		0
$3 \times 5=15$	$4 \times 5=20$	$8 \times 5=40$ (doubling the 4 times tobles)

Number bond strategy:

Bridged column method:
With renaming

Multiply the ones by 4 .

5 ones $\times 4=20$ ones
20 ones $=2$ tens

Multiply the tens by 4 .
Add the products.

$20+80=100$

Short multiplication:

With renaming

7 ones $\times 4=28$ ones
28 ones $=2$ tens +8 ones

Multiply the tens by 4.

4 tens $\times 4=16$ tens 16 tens +2 tens $=18$ tens

Make a family of multiplication and division facts:

$6 \times 4=24-24 \div 6=4$
$4 \times 6=24-24 \div 4=6$

Bridged column method:
Without renaming
$13 \times 3=39$

Short multiplication:
Without renaming
$2 \times 4=8$

$2 \times 40=80$

Solving word problems:

Bar model

There are 28 boys in a group.
There are 3 times as many girls as there are boys.
(a) How many girls are there? (b)

$28 \times 3=84$
There are 84 girls.

How many children are there?

$28+84=112$
There are 112 children altogether.

YEAR 3

DIVISION

Grouping: 'groups of'
Put $8-$ into groups of 4.

$8 \div 4=2$
2 plates are needed.
"I have made groups of 4.
There are 2 equal groups. There are 4 in each group.
2 equal groups of 4 equals 8 ."

Grouping: 'equal groups'
Put 8 into 4 equal groups.

$8 \div 2=4$
4 trays are needed.

Number bond strategy: Division

Solving word problems:

 Bar modelHow many beads do the children have altogether?

Make a family of multiplication and division facts:

$6 \times 4=24-24 \div 6=4$
$4 \times 6=24-24 \div 4=6$

Number bond and long division:

3

4
1 ten +2 ones $=12$
$96 \div 8=12$

YEAR 4

PLACE VALUE

Base ten or dienes blocks:
 Thousands/Hundreds/Tens/Ones

2 thousands +3 hundreds +4 tens +5 ones

Value of digits:

2 thousands +3 hundreds +4 tens +5 ones

thousands	hundreds	tens	ones
2	3	4	5

$2345=2$ thousands +3 hundreds +4 tens +5 ones $2427=2000+300+40+5$
The digit 2 stands for 2 thousand or 2000.
The digit 3 stands for 3 hundreds or 300.
The digit 4 stands for 4 tens or 40 .
The digit 5 stands for 5 ones or 5 .
We write 2345 as two thousand, three hundred and forty-five.

Place value counters:

7 thousands +0 hundreds +2 tens +8 ones $=7028$

	10 10	$\begin{array}{lll} \hline 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 \end{array}$

Number patterns:
What number is 1 more than 1485 ?
1485
This digit changes because we add (1.
$1485+1=1486$
What number is 10 more than $1485 ?$
14885

$$
\begin{gathered}
\text { This diglt changes because } \\
\text { we add } 10 .
\end{gathered} \quad 1485+10=1495
$$

What number is 100 less than 1485 ?
1485
This diglt changes because
we subtract 100 .
$1485-100=1395$

Partitioning:

$2345=2000+300+40+5$

2345 is a 4 -digit

We write 2345 as two thousand, three hundred and forty-five.

Place value cards:

Separating the numbers like this is called partitioning.

Comparing numbers:

352 is more than 241 352 is greater than 241
$352>241$
Comparing numbers:

thousands	hundreds	tens	ones
2	5	0	0

2500 is less than 5800 $2500<5800$

YEAR 4

ADDITION

Base 10 method:

Thousands	Hundreds	Tens	Ones

Number line method:

Number bond method:

Bar model:

Counters method:

Abstract calculations:

Commutative	Inverse
$1415+12=1427$	$1427-12=1415$
$12+1415=1427$	$1427-1415=12$

Number bond method:

Column addition:
Without renaming:
With renaming:

$$
\begin{array}{r}
1415 \\
+\quad 12415 \\
\hline 1427
\end{array} \begin{array}{r}
146 \\
\hline 1511
\end{array}
$$

YEAR 4

SUBTRACTION

Counters method:

Thoumands	Hunareas	Tens	ones
-	$\bigcirc \bigcirc$	(0) (1)	- ${ }^{\text {- }}$
	$\bigcirc \bigcirc$		(-)
	- ${ }^{-}$		* *
			* *

Number line method:

Number bond method:

Bar model:

1728
 1724

Base 10 method:

Thousands	Hundreds	Tens	Ones

Abstract calculations:

Commutative	Inverse
$1728-4=1724$	$1724+4=1728$
$1728-1724=4$	$4+1724=1728$

Number bond method:

Without renaming:

$$
\begin{array}{r}
1728 \\
-\quad 1^{6721} 18 \\
\hline 1724 \\
\hline \quad 349 \\
\hline 379
\end{array}
$$

YEAR 4

MULTIPLICATION

Bar model:

$6 \times 9=54$					
9	9	9	9	9	9

Multiply 3 numbers:

Multiplying by 10 :

Method 1
30
30
30
30
30
30
30

Method 2

$9 \times 3=27$
9×3 tens $=27$ tens
$9 \times 30=270$

What is the product of 9 and 30 ?
$9 * 30=\square$

Method 3
$9 \times 30=9 \times 3 \times 10$
$=9 \times 3 \times 10$
$=27 \times 10$
$=27$ tens
$=270$

Bridged and short multiplication:

Number line method:

Array method:

$6 \times 3=18 \quad$ OR $\quad 3 \times 6=18$

Multiplying by 100:

$$
7 \times 300=
$$

Method 2
$7 \times 3=21$
$7=3$ hundreds $=21$ hundreds
$7 * 300=2100$

21 hundreds $=2100$

Method 3 $7=300=7 \times 3=300$ $=7 \cdot 3=100$ $=21=100$ $=21$ hundred $=2100$

Bridged and short multiplication:

1 4\quad3 $\times \quad$ \times 9

YEAR 4

DIVISION

Division by grouping:

Placing into 9 equal groups

$36 \div 9=4$

Each qroup has 4 strawberries.

Placing in groups of 9

$$
36 \div 9=4
$$

There are 4 groups.

Grouping with remainders:

There were 11 balloons.

Divide using multiplication:

$$
\begin{aligned}
& 24 \div 3=8 \\
& 3 \times \underline{8}=24
\end{aligned}
$$

Divide with remainders:

Method 1

Number patterns:
What number is 1 more than 1485 ?
1485

What number is 10 more than $1485 ?$
14885

Part-part-whole method

What number is
1485

Dividing by 1, 10 and 100:

Divide without remainders:
Method 1

Value of digits / place value counters. Reading numbers - place value cards place value charts

Show 59725 using number discs.

ten thousands	thousands	hundreds	tens	ones
5	9	7	2	5

Reading numbers place value charts

hundred thousands	ten thousands	thousands	hundreds	tens	ones
1	1			1	1

Comparing Numbers

The digit 5 is in the ten thousands place. It stands for 50 thousands or 50000 .

The digit 9 is in the thousands place.
It stands for 9 thousands or 9000 .

The digit 7 is in the hundreds place.
It stands for 7 hundreds or 700 .

The digit 2 is in the tens place.
It stands for 2 tens or 20.
$59725=50000+9000+700+20+5$

We read 59725 as fifty-nine thousand, seven hundred and twenty-five.

Comparing Numbers

Number Patterns

YEAR 5
 ADDITION

Count on to add

(1) $10329+50000=$

Mental Calculation

Column Method
, rinu uie tumu cust on a two-migri stuy ut ure $240000+140000=$

Place value counters

Taxl fare for 14 th September:

$40000+45000=$ \square

$$
40 \quad 000
$$

$\begin{array}{r}+45000 \\ \hline 85000\end{array}$

$$
5
$$

Addition with renaming
$16000+17000=$

YEAR 5

 SUBTRACTION

 SUBTRACTION}
$30000 \quad 17000 \quad 726$

Count back

Subtraction using partitioning

Subtraction with renaming

Column subtraction
$80123-79654=$

$53279-29035=\square$

YEAR 5

MULTIPLICATION

Multiplying by 10100 and 1000

Using Place value counters

(1) $6 \times 10=$

$6 \times 10=6 \times 1$ ten
$=6$ tens
(2)
2) $6 \times 100=$

100100100100100100

$6 \times 100=6 \times 1$ hundred
$=6$ hundreds
3. $6 \times 1000=$

$6 \times 1000=6 \times 1$ thousand $=6$ thousands

Multiply 3 digit by 1 digit and 4 digit by 1 digit
$3 \times £ 118=$ \square
This shows 118.

Three sets of 8 boxes cost $£ 354$.
(3) $2718 \times 4=\square \quad 101010$

$$
\text { (1) } \begin{aligned}
& 2718 \times 4= \\
& 2000 \times 4=8000 \\
& 700 \times 4=2800 \\
& 10 \times 4=40 \\
& 8 \times 4=32 \\
& \hline 2718 \times 4=10872 \\
& \hline
\end{aligned}
$$

$\begin{array}{ccc}2 \text { thousands } 7 \text { hundreds } & 1 \text { ten } & 8 \text { ones } \\ \downarrow \\ 8 \text { thousands } 28 \text { hundreds } & \underset{4}{\downarrow} & \underset{4}{\downarrow} \text { tens } \\ 32 \text { ones }\end{array}$
(2) $2718 \times 4=\square$

$2718 \times 4=10872$

Using partitioning
$1022 \times 4=$ \square

Using PV counters for 2 digit by 2 digit
(1) $14 \times 12=$

2. $14 \times 22=$

Partitioning 2d by 2d (grid method)

Each row consists of 26 seats.
$28 \times 26=$
(10) 10

10

 -0006000 0000 $0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$
 -0000 00000000000000000000

 -0000 $0 \cdot 0 \cdot$ -०००००००००००० ०००००००००
$10 \times 26=260$
$10 \times 26=260$
$8 \times 26=208$
$28 \times 26=728$

There are 728 seats.
Thereare 728 seats.

There are 28 rows
Each row consists of 26 seats.

There are 728 seats.
-

Formal written method 2d by 2d
(4) $28 \times 26=$

$$
\begin{array}{r}
4 \\
28 \\
\times 26 \\
\hline 8
\end{array} \longrightarrow \begin{array}{r}
48 \\
\times 26 \\
\hline 168
\end{array}
$$

$$
\begin{array}{r}
1 \\
4 \\
28 \\
\times \quad 26 \\
\hline 168 \longrightarrow 28 \times 6 \\
+56 \longrightarrow 28 \times 20 \\
\hline 728 \\
\hline
\end{array}
$$

Partitioning 3d by 2d

$12 \times 132=$	208		
	\sin	$: D 8$	(E1)
	$50+18$	$10 \mathrm{O}$	(€1)
2 times	200	60	4
10 times	1000	300	20

$12 \times 132=1320+264$
$=1584$
It costs about 1584 Hong Kong dollars.

Formal written method

(3) $12 \times 132=$

$$
132
$$

$\times \quad 12$
$264 \longrightarrow$ multiply by 2
$+1320 \longrightarrow$ multiply by 10
1584

Using known facts

Can you continue his method?
Grid method 3d by 2d

```
12\times132=
```


$12 \times 132=1320+264$
$=1584$

YEAR 5

Division

Dividing by 10, 100 and 1000
 Partitioning

How many can we get from 4792?
(7) contains 1000 pleces.

How many

 1000s in 4000?There are 4 in 4000 .

Here is the remainder.
$4000 \div 1000=4$
4 thousands $\div 1$ thousand $=4$

(2) How many $<$ can we get from 4792?
< contains 100 pleces.

Here's the
remainder
$4700 \div 100=47$
47 hundreds $\div 1$ hundred $=47$

There are 47 groups of 100 in 4700.

3 How many can we get from 4792?
contains 10 pleces.

$4790 \div 10=479$
479 tens $\div 1$ ten $=479$
 remainder.

Dividing 3 digit and 4 digit by 1 digit
Using place value counters to partition

$$
\begin{aligned}
2528 \div 8 & =300+10+5+1 \\
& =316
\end{aligned}
$$

Abstract written methods

(2) - 's story

2528 ml of juice is put into 8 containers so that each container holds the same volume. What is the volume of juice in each container?
$2528 \mathrm{ml} \div 8=$ \square

Dividing with remainder Using PV counters

With written methods

(2) $376 \div 5=$

My father did not write down $37 \rightarrow 35$. He did It mentally.

5 \qquad

3376 children in a school are put into 5 equal groups.
Is this possible?
$376 \div 5=75$ remainder 1
It is not possible.
There will always be one child left over, who does not belong to any group.

As a fraction

4 376 ml of liquid soap is poured into 5 bottles.
Each bottle contalns the same amount of soap.
Find the volume of soap in each bottle.

YEAR 6

Place Value

With counters and PV cards

(2) Show 5472737 on a place-value chart.

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
5	4	7	2	7	3	7

$5472737=$
 $+$ $+$ $+$
54727737

\square

\qquad

1
Show 5472737 using number discs.

Using vocabulary

The diglt 5 is in the millions place.
It stands for 5 millions or 5000000 .

The digit 4 is in the hundred thousands place.
It stands for 4 hundred thousands or 400000 .

The diglt 7 appears more than once.
7 is in the ten thousands place.
It stands for 70000 .

7 is also in the hundreds place.
It stands for 700 .

7 is also in the ones place.
It stands for 7 .

The digit 2 is in the thousands place.
It stands for 2000 .

The digit 3 is in the tens place.
It stands for 30 .
$5472737=5000000+400000+70000+2000+700+30+7$

We write 5472737 as five million, four hundred and seventy-two
thousand, seven hundred and thirty-seven.

Rounding using numberlines

2 Round 8602112 to the nearest million.

8602112 is closer to 9 million than to 8 million.
$8602112 \approx 9$ million

3 Round 2904 391...

2904391 is closer to 3 million than to 2 million.
$2904391 \approx 3$ million

to the nearest 100000.

2904391 is closer to 2900000 than to 3000000.
$2904391 \approx 2900000$ (to the nearest 100000)

YEAR 6

Mixed Operations

(1)

2

(4)
made a different expression that has the value of 3 .

$$
(1+2) \div 3 \times 4+5-6
$$

Step 1: Perform the calculation in the brackets first.
Step 2: Multiply or divide whichever comes first.
Step 3: Add or subtract whichever comes first.

Multiplication

Multiplying by multiples of 10
Using counters
$414 \times 10=\square$
100100100100 becomes $10001000(1000(1000)$
10 becomes 100
(1) 11 becomes 10101010
$414 \times 10=4000+100+40$
$=4140$

Building to written methods Using counters
(1) $20 \times 113=$

$10 \times 113=1130$
$20 \times 113=2260$
$10 \times 113=1130$

$1!$

Using informal jottings

(2) $414 \times 20=$

Method 1
$414 \times 10=4140$
$414 \times 20=4140+4140$ $=8280$

Method 2
$414 \times 20=414 \times 2 \times 10$
$=828 \times 10$

using partitioning
(2) $23 \times 113=\square$
$20 \times 113=2260$
$\begin{aligned} 3 \times 113 & =339 \\ 23 \times 113 & =2599\end{aligned}$
23 boxes contain 2599 apples.
(3) $23 \times 113=\square$

$$
\begin{aligned}
& \begin{array}{r}
+\quad 339 \\
\hline 2599 \\
+2599
\end{array}
\end{aligned}
$$

23 boxes contain 2599 apples.
There are enough apples $\ln 23$ boxes.

1) $320 \times 31=$

100
$\underset{\substack{100 \\ 100 \\ 10}}{ } \xrightarrow{\times 10}$
 1200100 $\xrightarrow{\times 3}$

$3200 \times 3=9600$

$$
\begin{aligned}
& 320 \times 30=9600 \\
& 320 \times 1=320 \\
& \hline 320 \times 31=9920
\end{aligned}
$$

(2)
$320 \times 31=$

(3) $320 \times 31=$

100	100
10	100
10	$300 \times 31=9300$ 20×31
$320 \times 31=9220$	

Formal written method
5. $1320 \times 31=$

Using known facts

(1) $114 \times 12=$

$$
114 \times 24=
$$

\square
10010 1 1 1 1

I can also use 114×12
to find 114×24
(2) $114 \times 24=$

(3)
$114 \times 24=$ \qquad
$\begin{array}{r}114 \\ \times \quad 20 \\ \hline 2280 \\ \hline\end{array} \begin{array}{r}114 \\ \times \quad 456 \\ \hline 45\end{array} \begin{array}{r}114 \\ \times \quad 24 \\ \hline 280\end{array} 114 \times 20$

114
$\times \quad 20$
2280
114 $\times \quad 46$ 45$\longrightarrow \begin{array}{r}114 \\ \times \quad 24 \\ \hline 456\end{array}+114 \times 4$
$+2280 \longrightarrow 114 \times 20$

4. Given that $114 \times 24=2736$, find the value of 2114×24.

$2114 \times 24=48000+2736$
$=50736$
Estimate by calculating 2000×24.

2
$3296 \div 32=$ \qquad

$\begin{aligned} 3296 \div 32 & =1648 \div 16 \\ & =824 \div 8\end{aligned}$
$8 \begin{array}{r}103 \\ \hline 824\end{array}$ $\begin{array}{r}184 \\ -800 \\ \hline 24\end{array} \longrightarrow 800 \div 8=100$

$10+10+10$

Using known facts

Using bar models

2
$360 \div 12=\square$
$360=36$ tens $\quad 12 \begin{array}{r}360 \\ -\quad 36 \\ \hline\end{array}$

$360 \div 12=$

$3600 \div 12$ \square

36 hundreds shared equally by 12

Using Partitioning
(1) $3296 \div 32=$

(2) $7192 \div 31=$

100100
$\begin{array}{lllll}10 & 10 & 10 & 10 & 10\end{array}$
$10 \quad 10$
1010 1 1

Using grouping
(3) $7192 \div 31=$ \qquad

$\begin{array}{r}31$| 7 | 1 | 2 | |
| ---: | :--- | :--- | :--- |
| - | 1000 | | |
| | 0 | 9 | | 100

\hline\end{array} $\begin{array}{lll}71 & 9 & 2 \\ 6 & 2 & 0\end{array}$

$$
992
$$

$$
-\begin{array}{r}
930 \\
62
\end{array} \longrightarrow 930 \div 31=30
$$

$$
\begin{gathered}
-62 \\
\hline 0 \\
\hline
\end{gathered}
$$

310
-310
310
-62
$\begin{array}{r}-62 \\ \hline 0 \\ \hline\end{array}$

Four Operations on Whole Numbers Page 64

Formal written method

78

Recording with remainders

As a number

Each tray contains 108 apricots.

$$
\begin{aligned}
& 4 \times 108=432 \\
& 500-432=68 \\
& 500 \div 108=4 \text { remainder } 68
\end{aligned}
$$

4 trays are needed to pack 500 apricots.
There are 68 apricots left over.

As fractions and decimals

1) $£ 1146 \div 24=\square$

